diff options
Diffstat (limited to 'lib/libkvm/kvm_proc.c')
-rw-r--r-- | lib/libkvm/kvm_proc.c | 832 |
1 files changed, 832 insertions, 0 deletions
diff --git a/lib/libkvm/kvm_proc.c b/lib/libkvm/kvm_proc.c new file mode 100644 index 00000000000..2e92a482980 --- /dev/null +++ b/lib/libkvm/kvm_proc.c @@ -0,0 +1,832 @@ +/*- + * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. + * Copyright (c) 1989, 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This code is derived from software developed by the Computer Systems + * Engineering group at Lawrence Berkeley Laboratory under DARPA contract + * BG 91-66 and contributed to Berkeley. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Berkeley and its contributors. + * 4. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#if defined(LIBC_SCCS) && !defined(lint) +static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; +#endif /* LIBC_SCCS and not lint */ + +/* + * Proc traversal interface for kvm. ps and w are (probably) the exclusive + * users of this code, so we've factored it out into a separate module. + * Thus, we keep this grunge out of the other kvm applications (i.e., + * most other applications are interested only in open/close/read/nlist). + */ + +#include <sys/param.h> +#include <sys/user.h> +#include <sys/proc.h> +#include <sys/exec.h> +#include <sys/stat.h> +#include <sys/ioctl.h> +#include <sys/tty.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> +#include <nlist.h> +#include <kvm.h> + +#include <vm/vm.h> +#include <vm/vm_param.h> +#include <vm/swap_pager.h> + +#include <sys/sysctl.h> + +#include <limits.h> +#include <db.h> +#include <paths.h> + +#include "kvm_private.h" + +#define KREAD(kd, addr, obj) \ + (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) + +int _kvm_readfromcore __P((kvm_t *, u_long, u_long)); +int _kvm_readfrompager __P((kvm_t *, struct vm_object *, u_long)); +ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, + size_t)); + +static char **kvm_argv __P((kvm_t *, const struct proc *, u_long, int, + int)); +static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); +static char **kvm_doargv __P((kvm_t *, const struct kinfo_proc *, int, + void (*)(struct ps_strings *, u_long *, int *))); +static int kvm_proclist __P((kvm_t *, int, int, struct proc *, + struct kinfo_proc *, int)); +static int proc_verify __P((kvm_t *, u_long, const struct proc *)); +static void ps_str_a __P((struct ps_strings *, u_long *, int *)); +static void ps_str_e __P((struct ps_strings *, u_long *, int *)); + +char * +_kvm_uread(kd, p, va, cnt) + kvm_t *kd; + const struct proc *p; + u_long va; + u_long *cnt; +{ + register u_long addr, head; + register u_long offset; + struct vm_map_entry vme; + struct vm_object vmo; + int rv; + + if (kd->swapspc == 0) { + kd->swapspc = (char *)_kvm_malloc(kd, kd->nbpg); + if (kd->swapspc == 0) + return (0); + } + + /* + * Look through the address map for the memory object + * that corresponds to the given virtual address. + * The header just has the entire valid range. + */ + head = (u_long)&p->p_vmspace->vm_map.header; + addr = head; + while (1) { + if (KREAD(kd, addr, &vme)) + return (0); + + if (va >= vme.start && va < vme.end && + vme.object.vm_object != 0) + break; + + addr = (u_long)vme.next; + if (addr == head) + return (0); + } + + /* + * We found the right object -- follow shadow links. + */ + offset = va - vme.start + vme.offset; + addr = (u_long)vme.object.vm_object; + + while (1) { + /* Try reading the page from core first. */ + if ((rv = _kvm_readfromcore(kd, addr, offset))) + break; + + if (KREAD(kd, addr, &vmo)) + return (0); + + /* If there is a pager here, see if it has the page. */ + if (vmo.pager != 0 && + (rv = _kvm_readfrompager(kd, &vmo, offset))) + break; + + /* Move down the shadow chain. */ + addr = (u_long)vmo.shadow; + if (addr == 0) + return (0); + offset += vmo.shadow_offset; + } + + if (rv == -1) + return (0); + + /* Found the page. */ + offset %= kd->nbpg; + *cnt = kd->nbpg - offset; + return (&kd->swapspc[offset]); +} + +#define vm_page_hash(kd, object, offset) \ + (((u_long)object + (u_long)(offset / kd->nbpg)) & kd->vm_page_hash_mask) + +int +_kvm_coreinit(kd) + kvm_t *kd; +{ + struct nlist nlist[3]; + + nlist[0].n_name = "_vm_page_buckets"; + nlist[1].n_name = "_vm_page_hash_mask"; + nlist[2].n_name = 0; + if (kvm_nlist(kd, nlist) != 0) + return (-1); + + if (KREAD(kd, nlist[0].n_value, &kd->vm_page_buckets) || + KREAD(kd, nlist[1].n_value, &kd->vm_page_hash_mask)) + return (-1); + + return (0); +} + +int +_kvm_readfromcore(kd, object, offset) + kvm_t *kd; + u_long object, offset; +{ + u_long addr; + struct pglist bucket; + struct vm_page mem; + off_t seekpoint; + + if (kd->vm_page_buckets == 0 && + _kvm_coreinit(kd)) + return (-1); + + addr = (u_long)&kd->vm_page_buckets[vm_page_hash(kd, object, offset)]; + if (KREAD(kd, addr, &bucket)) + return (-1); + + addr = (u_long)bucket.tqh_first; + offset &= ~(kd->nbpg -1); + while (1) { + if (addr == 0) + return (0); + + if (KREAD(kd, addr, &mem)) + return (-1); + + if ((u_long)mem.object == object && + (u_long)mem.offset == offset) + break; + + addr = (u_long)mem.hashq.tqe_next; + } + + seekpoint = mem.phys_addr; + + if (lseek(kd->pmfd, seekpoint, 0) == -1) + return (-1); + if (read(kd->pmfd, kd->swapspc, kd->nbpg) != kd->nbpg) + return (-1); + + return (1); +} + +int +_kvm_readfrompager(kd, vmop, offset) + kvm_t *kd; + struct vm_object *vmop; + u_long offset; +{ + u_long addr; + struct pager_struct pager; + struct swpager swap; + int ix; + struct swblock swb; + off_t seekpoint; + + /* Read in the pager info and make sure it's a swap device. */ + addr = (u_long)vmop->pager; + if (KREAD(kd, addr, &pager) || pager.pg_type != PG_SWAP) + return (-1); + + /* Read in the swap_pager private data. */ + addr = (u_long)pager.pg_data; + if (KREAD(kd, addr, &swap)) + return (-1); + + /* + * Calculate the paging offset, and make sure it's within the + * bounds of the pager. + */ + offset += vmop->paging_offset; + ix = offset / dbtob(swap.sw_bsize); +#if 0 + if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) + return (-1); +#else + if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) { + int i; + printf("BUG BUG BUG BUG:\n"); + printf("object %x offset %x pgoffset %x pager %x swpager %x\n", + vmop, offset - vmop->paging_offset, vmop->paging_offset, + vmop->pager, pager.pg_data); + printf("osize %x bsize %x blocks %x nblocks %x\n", + swap.sw_osize, swap.sw_bsize, swap.sw_blocks, + swap.sw_nblocks); + for (ix = 0; ix < swap.sw_nblocks; ix++) { + addr = (u_long)&swap.sw_blocks[ix]; + if (KREAD(kd, addr, &swb)) + return (0); + printf("sw_blocks[%d]: block %x mask %x\n", ix, + swb.swb_block, swb.swb_mask); + } + return (-1); + } +#endif + + /* Read in the swap records. */ + addr = (u_long)&swap.sw_blocks[ix]; + if (KREAD(kd, addr, &swb)) + return (-1); + + /* Calculate offset within pager. */ + offset %= dbtob(swap.sw_bsize); + + /* Check that the page is actually present. */ + if ((swb.swb_mask & (1 << (offset / kd->nbpg))) == 0) + return (0); + + if (!ISALIVE(kd)) + return (-1); + + /* Calculate the physical address and read the page. */ + seekpoint = dbtob(swb.swb_block) + (offset & ~(kd->nbpg -1)); + + if (lseek(kd->swfd, seekpoint, 0) == -1) + return (-1); + if (read(kd->swfd, kd->swapspc, kd->nbpg) != kd->nbpg) + return (-1); + + return (1); +} + +/* + * Read proc's from memory file into buffer bp, which has space to hold + * at most maxcnt procs. + */ +static int +kvm_proclist(kd, what, arg, p, bp, maxcnt) + kvm_t *kd; + int what, arg; + struct proc *p; + struct kinfo_proc *bp; + int maxcnt; +{ + register int cnt = 0; + struct eproc eproc; + struct pgrp pgrp; + struct session sess; + struct tty tty; + struct proc proc; + + for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { + if (KREAD(kd, (u_long)p, &proc)) { + _kvm_err(kd, kd->program, "can't read proc at %x", p); + return (-1); + } + if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) + KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, + &eproc.e_ucred); + + switch(what) { + + case KERN_PROC_PID: + if (proc.p_pid != (pid_t)arg) + continue; + break; + + case KERN_PROC_UID: + if (eproc.e_ucred.cr_uid != (uid_t)arg) + continue; + break; + + case KERN_PROC_RUID: + if (eproc.e_pcred.p_ruid != (uid_t)arg) + continue; + break; + } + /* + * We're going to add another proc to the set. If this + * will overflow the buffer, assume the reason is because + * nprocs (or the proc list) is corrupt and declare an error. + */ + if (cnt >= maxcnt) { + _kvm_err(kd, kd->program, "nprocs corrupt"); + return (-1); + } + /* + * gather eproc + */ + eproc.e_paddr = p; + if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { + _kvm_err(kd, kd->program, "can't read pgrp at %x", + proc.p_pgrp); + return (-1); + } + eproc.e_sess = pgrp.pg_session; + eproc.e_pgid = pgrp.pg_id; + eproc.e_jobc = pgrp.pg_jobc; + if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { + _kvm_err(kd, kd->program, "can't read session at %x", + pgrp.pg_session); + return (-1); + } + if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { + if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { + _kvm_err(kd, kd->program, + "can't read tty at %x", sess.s_ttyp); + return (-1); + } + eproc.e_tdev = tty.t_dev; + eproc.e_tsess = tty.t_session; + if (tty.t_pgrp != NULL) { + if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { + _kvm_err(kd, kd->program, + "can't read tpgrp at &x", + tty.t_pgrp); + return (-1); + } + eproc.e_tpgid = pgrp.pg_id; + } else + eproc.e_tpgid = -1; + } else + eproc.e_tdev = NODEV; + eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; + if (sess.s_leader == p) + eproc.e_flag |= EPROC_SLEADER; + if (proc.p_wmesg) + (void)kvm_read(kd, (u_long)proc.p_wmesg, + eproc.e_wmesg, WMESGLEN); + + (void)kvm_read(kd, (u_long)proc.p_vmspace, + (char *)&eproc.e_vm, sizeof(eproc.e_vm)); + + eproc.e_xsize = eproc.e_xrssize = 0; + eproc.e_xccount = eproc.e_xswrss = 0; + + switch (what) { + + case KERN_PROC_PGRP: + if (eproc.e_pgid != (pid_t)arg) + continue; + break; + + case KERN_PROC_TTY: + if ((proc.p_flag & P_CONTROLT) == 0 || + eproc.e_tdev != (dev_t)arg) + continue; + break; + } + bcopy(&proc, &bp->kp_proc, sizeof(proc)); + bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); + ++bp; + ++cnt; + } + return (cnt); +} + +/* + * Build proc info array by reading in proc list from a crash dump. + * Return number of procs read. maxcnt is the max we will read. + */ +static int +kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) + kvm_t *kd; + int what, arg; + u_long a_allproc; + u_long a_zombproc; + int maxcnt; +{ + register struct kinfo_proc *bp = kd->procbase; + register int acnt, zcnt; + struct proc *p; + + if (KREAD(kd, a_allproc, &p)) { + _kvm_err(kd, kd->program, "cannot read allproc"); + return (-1); + } + acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); + if (acnt < 0) + return (acnt); + + if (KREAD(kd, a_zombproc, &p)) { + _kvm_err(kd, kd->program, "cannot read zombproc"); + return (-1); + } + zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); + if (zcnt < 0) + zcnt = 0; + + return (acnt + zcnt); +} + +struct kinfo_proc * +kvm_getprocs(kd, op, arg, cnt) + kvm_t *kd; + int op, arg; + int *cnt; +{ + size_t size; + int mib[4], st, nprocs; + + if (kd->procbase != 0) { + free((void *)kd->procbase); + /* + * Clear this pointer in case this call fails. Otherwise, + * kvm_close() will free it again. + */ + kd->procbase = 0; + } + if (ISALIVE(kd)) { + size = 0; + mib[0] = CTL_KERN; + mib[1] = KERN_PROC; + mib[2] = op; + mib[3] = arg; + st = sysctl(mib, 4, NULL, &size, NULL, 0); + if (st == -1) { + _kvm_syserr(kd, kd->program, "kvm_getprocs"); + return (0); + } + kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); + if (kd->procbase == 0) + return (0); + st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); + if (st == -1) { + _kvm_syserr(kd, kd->program, "kvm_getprocs"); + return (0); + } + if (size % sizeof(struct kinfo_proc) != 0) { + _kvm_err(kd, kd->program, + "proc size mismatch (%d total, %d chunks)", + size, sizeof(struct kinfo_proc)); + return (0); + } + nprocs = size / sizeof(struct kinfo_proc); + } else { + struct nlist nl[4], *p; + + nl[0].n_name = "_nprocs"; + nl[1].n_name = "_allproc"; + nl[2].n_name = "_zombproc"; + nl[3].n_name = 0; + + if (kvm_nlist(kd, nl) != 0) { + for (p = nl; p->n_type != 0; ++p) + ; + _kvm_err(kd, kd->program, + "%s: no such symbol", p->n_name); + return (0); + } + if (KREAD(kd, nl[0].n_value, &nprocs)) { + _kvm_err(kd, kd->program, "can't read nprocs"); + return (0); + } + size = nprocs * sizeof(struct kinfo_proc); + kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); + if (kd->procbase == 0) + return (0); + + nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, + nl[2].n_value, nprocs); +#ifdef notdef + size = nprocs * sizeof(struct kinfo_proc); + (void)realloc(kd->procbase, size); +#endif + } + *cnt = nprocs; + return (kd->procbase); +} + +void +_kvm_freeprocs(kd) + kvm_t *kd; +{ + if (kd->procbase) { + free(kd->procbase); + kd->procbase = 0; + } +} + +void * +_kvm_realloc(kd, p, n) + kvm_t *kd; + void *p; + size_t n; +{ + void *np = (void *)realloc(p, n); + + if (np == 0) + _kvm_err(kd, kd->program, "out of memory"); + return (np); +} + +#ifndef MAX +#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#endif + +/* + * Read in an argument vector from the user address space of process p. + * addr if the user-space base address of narg null-terminated contiguous + * strings. This is used to read in both the command arguments and + * environment strings. Read at most maxcnt characters of strings. + */ +static char ** +kvm_argv(kd, p, addr, narg, maxcnt) + kvm_t *kd; + const struct proc *p; + register u_long addr; + register int narg; + register int maxcnt; +{ + register char *np, *cp, *ep, *ap; + register u_long oaddr = -1; + register int len, cc; + register char **argv; + + /* + * Check that there aren't an unreasonable number of agruments, + * and that the address is in user space. + */ + if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) + return (0); + + if (kd->argv == 0) { + /* + * Try to avoid reallocs. + */ + kd->argc = MAX(narg + 1, 32); + kd->argv = (char **)_kvm_malloc(kd, kd->argc * + sizeof(*kd->argv)); + if (kd->argv == 0) + return (0); + } else if (narg + 1 > kd->argc) { + kd->argc = MAX(2 * kd->argc, narg + 1); + kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * + sizeof(*kd->argv)); + if (kd->argv == 0) + return (0); + } + if (kd->argspc == 0) { + kd->argspc = (char *)_kvm_malloc(kd, kd->nbpg); + if (kd->argspc == 0) + return (0); + kd->arglen = kd->nbpg; + } + if (kd->argbuf == 0) { + kd->argbuf = (char *)_kvm_malloc(kd, kd->nbpg); + if (kd->argbuf == 0) + return (0); + } + cc = sizeof(char *) * narg; + if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) + return (0); + ap = np = kd->argspc; + argv = kd->argv; + len = 0; + /* + * Loop over pages, filling in the argument vector. + */ + while (argv < kd->argv + narg && *argv != 0) { + addr = (u_long)*argv & ~(kd->nbpg - 1); + if (addr != oaddr) { + if (kvm_uread(kd, p, addr, kd->argbuf, kd->nbpg) != + kd->nbpg) + return (0); + oaddr = addr; + } + addr = (u_long)*argv & (kd->nbpg - 1); + cp = kd->argbuf + addr; + cc = kd->nbpg - addr; + if (maxcnt > 0 && cc > maxcnt - len) + cc = maxcnt - len;; + ep = memchr(cp, '\0', cc); + if (ep != 0) + cc = ep - cp + 1; + if (len + cc > kd->arglen) { + register int off; + register char **pp; + register char *op = kd->argspc; + + kd->arglen *= 2; + kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, + kd->arglen); + if (kd->argspc == 0) + return (0); + /* + * Adjust argv pointers in case realloc moved + * the string space. + */ + off = kd->argspc - op; + for (pp = kd->argv; pp < argv; pp++) + *pp += off; + ap += off; + np += off; + } + memcpy(np, cp, cc); + np += cc; + len += cc; + if (ep != 0) { + *argv++ = ap; + ap = np; + } else + *argv += cc; + if (maxcnt > 0 && len >= maxcnt) { + /* + * We're stopping prematurely. Terminate the + * current string. + */ + if (ep == 0) { + *np = '\0'; + *argv++ = ap; + } + break; + } + } + /* Make sure argv is terminated. */ + *argv = 0; + return (kd->argv); +} + +static void +ps_str_a(p, addr, n) + struct ps_strings *p; + u_long *addr; + int *n; +{ + *addr = (u_long)p->ps_argvstr; + *n = p->ps_nargvstr; +} + +static void +ps_str_e(p, addr, n) + struct ps_strings *p; + u_long *addr; + int *n; +{ + *addr = (u_long)p->ps_envstr; + *n = p->ps_nenvstr; +} + +/* + * Determine if the proc indicated by p is still active. + * This test is not 100% foolproof in theory, but chances of + * being wrong are very low. + */ +static int +proc_verify(kd, kernp, p) + kvm_t *kd; + u_long kernp; + const struct proc *p; +{ + struct proc kernproc; + + /* + * Just read in the whole proc. It's not that big relative + * to the cost of the read system call. + */ + if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) != + sizeof(kernproc)) + return (0); + return (p->p_pid == kernproc.p_pid && + (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); +} + +static char ** +kvm_doargv(kd, kp, nchr, info) + kvm_t *kd; + const struct kinfo_proc *kp; + int nchr; + void (*info)(struct ps_strings *, u_long *, int *); +{ + register const struct proc *p = &kp->kp_proc; + register char **ap; + u_long addr; + int cnt; + struct ps_strings arginfo; + + /* + * Pointers are stored at the top of the user stack. + */ + if (p->p_stat == SZOMB || + kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo, + sizeof(arginfo)) != sizeof(arginfo)) + return (0); + + (*info)(&arginfo, &addr, &cnt); + if (cnt == 0) + return (0); + ap = kvm_argv(kd, p, addr, cnt, nchr); + /* + * For live kernels, make sure this process didn't go away. + */ + if (ap != 0 && ISALIVE(kd) && + !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) + ap = 0; + return (ap); +} + +/* + * Get the command args. This code is now machine independent. + */ +char ** +kvm_getargv(kd, kp, nchr) + kvm_t *kd; + const struct kinfo_proc *kp; + int nchr; +{ + return (kvm_doargv(kd, kp, nchr, ps_str_a)); +} + +char ** +kvm_getenvv(kd, kp, nchr) + kvm_t *kd; + const struct kinfo_proc *kp; + int nchr; +{ + return (kvm_doargv(kd, kp, nchr, ps_str_e)); +} + +/* + * Read from user space. The user context is given by p. + */ +ssize_t +kvm_uread(kd, p, uva, buf, len) + kvm_t *kd; + register const struct proc *p; + register u_long uva; + register char *buf; + register size_t len; +{ + register char *cp; + + cp = buf; + while (len > 0) { + register int cc; + register char *dp; + u_long cnt; + + dp = _kvm_uread(kd, p, uva, &cnt); + if (dp == 0) { + _kvm_err(kd, 0, "invalid address (%x)", uva); + return (0); + } + cc = MIN(cnt, len); + bcopy(dp, cp, cc); + + cp += cc; + uva += cc; + len -= cc; + } + return (ssize_t)(cp - buf); +} |